初一數學下冊重點知識:1.同底數冪的乘法:am?an=am+n,底數不變,指數相加。2.同底數冪的除法:am÷an=am-n,底數不變,指數相減。3.冪的乘方與積的乘方:(am)n=amn,底數不變,指數相乘;(ab)n=anbn,積的乘方等于各因式乘方的積。
1.同底數冪的乘法:am?an=am+n,底數不變,指數相加。
2.同底數冪的除法:am÷an=am-n,底數不變,指數相減。
3.冪的乘方與積的乘方:(am)n=amn,底數不變,指數相乘;(ab)n=anbn,積的乘方等于各因式乘方的積。
4.零指數與負指數公式:
(1)a0=1(a≠0);a-n=,(a≠0)。注意:00,0-2無意義。
(2)有了負指數,可用科學記數法記錄小于1的數,例如:0.0000201=2.01×10-5。
5.(1)平方差公式:(a+b)(a-b)=a2-b2,兩個數的和與這兩個數的差的積等于這兩個數的平方差;
(2)完全平方公式:
①(a+b)2=a2+2ab+b2,兩個數和的平方,等于它們的平方和,加上它們的積的2倍;
②(a-b)2=a2-2ab+b2,兩個數差的平方,等于它們的平方和,減去它們的積的2倍;
※③(a+b-c)2=a2+b2+c2+2ab-2ac-2bc
6.:(1)若二次三項式x2+px+q是完全平方式,則有關系式:;
※(2)二次三項式ax2+bx+c經過*,總可以變為a(x-h)2+k的形式。
注意:當x=h時,可求出ax2+bx+c的(或最小)值k。
※(3)注意:。
7.單項式的系數與次數:單項式中不為零的數字因數,叫單項式的數字系數,簡稱單項式的系數;
系數不為零時,單項式中所有字母指數的和,叫單項式的次數。
8.多項式的項數與次數:多項式中所含單項式的個數就是多項式的項數,每個單項式叫多項式的項;
多項式里,次數項的次數叫多項式的次數;
注意:(若a、b、c、p、q是常數)ax2+bx+c和x2+px+q是常見的兩個二次三項式。
9.同類項:所含字母相同,并且相同字母的指數也相同的單項式是同類項。
10.合并同類項法則:系數相加,字母與字母的指數不變。
1、同一平面內,兩直線不平行就相交。
2.兩條直線相交所成的四個角中,相鄰的兩個角叫做鄰補角,特點是兩個角共用一條邊,另一條邊互為反向延長線,性質是鄰補角互補;相對的兩個角叫做對頂角,特點是它們的兩條邊互為反向延長線。性質是對頂角相等。
3.垂直定義:兩條直線相交所成的四個角中,如果有一個角為90度,則稱這兩條直線互相垂直。其中一條直線叫做另外一條直線的垂線,他們的交點稱為垂足。
4.垂直三要素:垂直關系,垂直記號,垂足
5.垂直公理:過一點有且只有一條直線與已知直線垂直。
6.垂線段最短;7.點到直線的距離:直線外一點到這條直線的垂線段的長度。
8.兩條直線被第三條直線所截:同位角F(在兩條直線的同一旁,第三條直線的同一側),內錯角Z(在兩條直線內部,位于第三條直線兩側),同旁內角U(在兩條直線內部,位于第三條直線同側)。
9.平行公理:過直線外一點有且只有一條直線與已知直線平行。
10.如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。如果b//a,c//a,那么b//cP174題
11.平行線的判定。結論:在同一平面內,如果兩條直線都垂直于同一條直線,那么這兩條直線平行。
12、平行線的性質:1.兩直線平行,同位角相等。2.兩直線平行,內錯角相等。3.兩直線平行,同旁內角互補。
1、含有未知數的等式叫方程,使方程左右兩邊的值相等的未知數的值叫方程的解。
2、方程含有兩個未知數,并且含有未知數的項的次數都是1,這樣的方程叫二元一次方程,二元一次方程的一般形式為(為常數,并且)。使二元一次方程的左右兩邊的值相等的未知數的值叫二元一次方程的解,一個二元一次方程一般有無數組解。
3、方程組含有兩個未知數,并且含有未知數的項的次數都是1,這樣的方程組叫二元一次方程組。使二元一次方程組每個方程的左右兩邊的值相等的未知數的值叫二元一次方程組的解,一個二元一次方程組一般有一個解。
4、用代入法解二元一次方程組的一般步驟:觀察方程組中,是否有用含一個未知數的式子表示另一個未知數,如果有,則將它直接代入另一個方程中;如果沒有,則將其中一個方程變形,用含一個未知數的式子表示另一個未知數;再將表示出的未知數代入另一個方程中,從而消去一個未知數,求出另一個未知數的值,將求得的未知數的值代入原方程組中的任何一個方程,求出另外一個未知數的值。
5、用加減法解二元一次方程組的一般步驟:(1)方程組的兩個方程中,如果同一個未知數的系數既不相等又不互為相反數,就用適當的數去乘方程的兩邊,使同一個未知數的系數相等或互為相反數;(2)把兩個方程的兩邊分別相加或相減,消去一個未知數;(3)解這個一元一次方程,求出一個未知數的值;(4)將求出的未知數的值代入原方程組中的任何一個方程,求出另外一個未知數的值,從而得到原方程組的解。
6、解三元一次方程組的一般步驟:①觀察方程組中未知數的系數特點,確定先消去哪個未知數;②利用代入法或加減法,把方程組中的一個方程,與另外兩個方程分別組成兩組,消去同一個未知數,得到一個關于另外兩個未知數的二元一次方程組;③解這個二元一次方程組,求得兩個未知數的值;④將這兩個未知數的值代入原方程組中較簡單的一個方程中,求出第三個未知數的值,從而得到原三元一次方程組的解。
1、在同一平面內,兩條直線的位置關系有兩種:相交和平行,垂直是相交的一種特殊情況。
2、在同一平面內,不相交的兩條直線叫平行線。如果兩條直線只有一個公共點,稱這兩條直線相交;如果兩條直線沒有公共點,稱這兩條直線平行。
3、兩條直線相交所構成的四個角中,有公共頂點且有一條公共邊的兩個角是鄰補角。鄰補角的性質:鄰補角互補。如圖1所示,與互為鄰補角,與互為鄰補角。 + = 180°; + = 180°; + = 180°;+ = 180°。
4、兩條直線相交所構成的四個角中,一個角的兩邊分別是另一個角的兩邊的反向延長線,這樣的兩個角互為對頂角。對頂角的性質:對頂角相等。如圖1所示,與互為對頂角。 = ;
5、兩條直線相交所成的角中,如果有一個是直角或90°時,稱這兩條直線互相垂直,
其中一條叫做另一條的垂線。如圖2所示,當= 90°時,⊥ 。
垂線的性質:
性質1:過一點有且只有一條直線與已知直線垂直。
性質2:連接直線外一點與直線上各點的所有線段中,垂線段最短。
性質3:如圖2所示,當a ⊥ b時,= = = = 90°。
點到直線的距離:直線外一點到這條直線的垂線段的長度叫點到直線的距離。
6、同位角、內錯角、同旁內角基本特征:
①在兩條直線(被截線)的同一方,都在第三條直線(截線)的同一側,這樣
的兩個角叫同位角。圖3中,共有對同位角:與是同位角;
與是同位角;與是同位角;與是同位角。
②在兩條直線(被截線)之間,并且在第三條直線(截線)的兩側,這樣的兩個角叫內錯角。圖3中,共有對內錯角:與是內錯角;與是內錯角。
③在兩條直線(被截線)的之間,都在第三條直線(截線)的同一旁,這樣的兩個角叫同旁內角。圖3中,共有對同旁內角:與是同旁內角;與是同旁內角。
7、平行公理:經過直線外一點有且只有一條直線與已知直線平行。
平行公理的推論:如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。
平行線的性質:
性質1:兩直線平行,同位角相等。如圖4所示,如果a∥b,
則= ; = ; = ; = 。
性質2:兩直線平行,內錯角相等。如圖4所示,如果a∥b,則= ; = 。
性質3:兩直線平行,同旁內角互補。如圖4所示,如果a∥b,則+ = 180°;
+ = 180°。
性質4:平行于同一條直線的兩條直線互相平行。如果a∥b,a∥c,則∥ 。
8、平行線的判定:
判定1:同位角相等,兩直線平行。如圖5所示,如果=
或=或=或=,則a∥b。
判定2:內錯角相等,兩直線平行。如圖5所示,如果=或=,則a∥b 。
判定3:同旁內角互補,兩直線平行。如圖5所示,如果+ = 180°;
+ = 180°,則a∥b。
判定4:平行于同一條直線的兩條直線互相平行。如果a∥b,a∥c,則∥ 。
9、判斷一件事情的語句叫命題。命題由題設和結論兩部分組成,有真命題和假命題之分。如果題設成立,那么結論一定成立,這樣的命題叫真命題;如果題設成立,那么結論不一定成立,這樣的命題叫假命題。真命題的正確性是經過推理證實的,這樣的真命題叫定理,它可以作為繼續推理的依據。
10、平移:在平面內,將一個圖形沿某個方向移動一定的距離,圖形的這種移動叫做平移變換,簡稱平移。
數學建立在基本概念和公式上,學生需要花時間理解概念、公式和解決問題的方法,同時積累做題經驗。因此要認真聽課,注意做筆記,及時向老師請教不懂的...
初一是整個初中階段的開始,而初一數學知識的學習是在為今后的學習做準備。而數學計算幾乎貫穿了數學知識的每個知識點和每種題型。可見,數學計算是數...
初一數學重要知識點:包括代數式的定義、整式(單項式與多項式)、升(降)冪排列、代數式的書寫要求、系數與次數等。這是代數運算的基礎,需要學生掌...
學習初一語文也需要總結和歸納,讓孩子學會提煉知識要點,形成思維導圖或筆記,這有助于記憶和理解。同時,也可以幫助孩子養成整理思緒、梳理知識的好...
學習時間的合理安排是提高初一語文成績的重要因素之一。學生應該根據自己的實際情況,合理安排學習時間,確保每天都有足夠的時間進行初一語文學習。可...
閱讀是提高初一語文成績的基礎。初一學生應該養成每天閱讀的習慣,不斷豐富自己的閱讀量。閱讀的內容可以包括課本、課外書籍、報紙、雜志等。通過廣泛...